

(07 Marks)

USN

Second Semester B.E. Degree Examination, Aug./Sept.2020 **Engineering Mathematics - II**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

1 a. Solve:
$$\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 8y = 0$$
 (06 Marks)

b. Solve:
$$y'' - 4y' + 13y = \cos 2x$$
 (07 Marks)

Solve by the method of undetermined coefficients of the equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^x \tag{07 Marks}$$

2 a. Solve:
$$\frac{d^2y}{dx^2} - 4y = \cosh(2x - 1)$$
 (06 Marks)

b. Solve:
$$y'' + 3y' + 2y = 12x^2$$
 (07 Marks)

c. Solve by the method of variation of parameters: $y'' + a^2y = \sec ax$

3 a. Solve:
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = (1+x)$$
 (06 Marks)

b. Solve:
$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$
 (07 Marks)

Obtain the general solution and the singular solution of the equation $x^4p^2 + 2x^3py - 4 = 0$ (07 Marks)

4 a. Solve:
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = \sin 2[\log(x+1)]$$
 (06 Marks)

Solve: $p^2 + 2py Cotx = y$ (07 Marks)

c. Solve the equation (px - y) (py + x) = 2p by reducing into Clairaut's form, taking the substitutions $X = x^2$, $Y = y^2$. (07 Marks)

Module-3

5 a. If
$$z = e^{ax+by}$$
 f(ax - by), then show that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$. (06 Marks)

b. Solve $\frac{\partial^2 z}{\partial x^2} = xy$ subject to the conditions that $\frac{\partial z}{\partial x} = \log(1+y)$ when x = 1, and z = 0 when

Find the solution of one dimensional wave equation, using the method of separation of variables. (07 Marks)

OR

- Form the PDE by eliminating the arbitrary functions ϕ from $lx + my + nz = \phi(x^2 + y^2 + z^2)$ (06 Marks)
 - b. Solve $\left[\frac{\partial^2 z}{\partial x \partial y}\right] = \sin x \sin y$ subject to the condition $\left[\frac{\partial z}{\partial y}\right] = -2\sin y$ when x = 0 and z = 0 if y is a odd multiple of $\pi/2$.
 - Derive an one dimensional heat equation in the form $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$. (07 Marks)

- Change the order of integration and hence evaluate $\int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} xy \, dy \, dx$ (06 Marks)
 - Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} x + y + z \, dz \, dy \, dx$ (07 Marks)
 - Show that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ with usual notations. (07 Marks)

- Evaluate $\iint e^{-(x^2+y^2)} dxdy$ by changing to polar coordinates. (06 Marks)
 - Find by double integration the area enclosed by the curve $r = a(1 + \cos\theta)$ between $\theta = 0$ and (07 Marks)
 - c. Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ (07 Marks)

- Find the Laplace transform of f(t) = t(sint). (06 Marks)
 - If $f(t) = t^2$, 0 < t < 2 and f(t + 2) = f(t) for t > 2, find $L\{f(t)\}$. (07 Marks)
 - Find the inverse Laplace transform of $\left| \frac{s+5}{s^2-6s+13} \right|$ (07 Marks)

- Find the Laplace transform of the unit step function $f(t) = \begin{cases} \sin t, & 0 < t \le \frac{\pi}{2} \\ \cos t, & t > \frac{\pi}{2} \end{cases}$ (06 Marks)
 - Employ Laplace transform to solve the equation $y'' + 5y' + 6y = 5e^{2x}$ (07 Marks)
 - Find the inverse Laplace transform of $\frac{s^2}{(s^2 + a^2)^2}$, using convolution theorem. (07 Marks)